Approximate Solutions to Nonlinear Problems of Solid Mechanics by Quasilinearization Method
نویسندگان
چکیده
منابع مشابه
Quasilinearization Approach to Nonlinear Problems in Physics
The general conditions under which the quadratic, uniform and monotonic convergence in the quasilinearization method could be proved are formulated and elaborated. The method, whose mathematical basis in physics was discussed recently by one of the present authors (VBM), approximates the solution of a nonlinear differential equation by treating the nonlinear terms as a perturbation about the li...
متن کاملQuasilinearization approach to quantum mechanics
The quasilinearization method (QLM) of solving nonlinear differential equations is applied to the quantum mechanics by casting the Schrödinger equation in the nonlinear Riccati form. The method, whose mathematical basis in physics was discussed recently by one of the present authors (VBM), approaches the solution of a nonlinear differential equation by approximating the nonlinear terms by a seq...
متن کاملBasic Themes and Pretty Problems of Nonlinear Solid Mechanics
The first part of this paper describes some important underlying themes in the mathematical theory of continuum mechanics that are distinct from formulating and analyzing governing equations. The main part of this paper is devoted to a survey of some concrete, conceptually simple, pretty problems that help illuminate the underlying themes. The paper concludes with a discussion of the crucial ro...
متن کاملNonlinear algebraic multigrid for constrained solid mechanics problems using Trilinos
The application of the finite element method to nonlinear solid mechanics problems results in the neccessity to repeatedly solve a large nonlinear set of equations. In this paper we limit ourself to problems arising in constrained solid mechanics problems. It is common to apply some variant of Newton’s method or a Newton– Krylov method to such problems. Often, an analytic Jacobian matrix is for...
متن کاملEdge-based Finite Element Techniques for Nonlinear Solid Mechanics Problems
Edge-based data structures are used to improve computational efficiency of Inexact Newton methods for solving finite element nonlinear solid mechanics problems on unstructured meshes. Edge-based data structures are employed to store the stiffness matrix coefficients and to compute sparse matrix-vector products needed in the inner iterative driver of the Inexact Newton method. Numerical experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Structural Integrity
سال: 2020
ISSN: 2452-3216
DOI: 10.1016/j.prostr.2020.11.073